MODELING THE PROPERTIES OF GAS SENSOR MATERIALS BASED ON COBALT-CONTAINING POLYACRYLONITRILE USING REGRESSION ANALYSIS AND NEURAL NETWORKS
نویسندگان
چکیده
A modeling approach has been developed for materials based on organic semiconductorsand their physicochemical and gas-sensitive properties. For modeling, such methods as multiplelinear non-linear regression, neural networks were used. As an input vector theproperties of metal-containing polyacrylonitrile are the parameters technological process offorming materials: mass fraction alloying component (cobalt) in film-forming solution,technological modes IR annealing: temperature, time first second stages. Outputvector - functional characteristics physical chemical properties (resistivity,gas sensitivity coefficient, stability selectivity). Abstract—Metal–carbon systems with Co metalparticles have synthesized by pyrolysis. The resistance valueswere measured medium detected gas (chlorine). Modeling characteristicsand was carried out basis data obtainedfrom study 200 samples cobalt/polyacrylonitrile films. Multiple linear regression proved to be effective predicting resistivity values. Neural used predict gassensitivity selectivity, cobalt-containing films.An artificial network form a multilayer perceptron built coefficient sensor elements processes obtainingmaterial (mass stages). Complianceof model checked: experimental data: correlation coefficientR=0.82, root-mean-square error st=0.017. models satisfactorily describe collecteddata within error, which makes it possible optimize compositionand heat treatment conditions.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis
The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...
متن کاملscour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کاملEstimation of Industrial Production Costs, Using Regression Analysis, Neural Networks or Hybrid Neural - Regression Method?
Estimation (Forecasting) of industrial production costs is one of the most important factor affecting decisions in the highly competitive markets. Thus, accuracy of the estimation is highly desirable. Hibrid Regression Neural Network is an approach proposed in this paper to obtain better fitness in comparison with Regression Analysis and the Neural Network methods. Comparing the estimated resul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiâ ÛFU
سال: 2022
ISSN: ['1999-9429', '2311-3103']
DOI: https://doi.org/10.18522/2311-3103-2022-6-22-30